Approximate likelihood methods for estimating local recombination rates

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

BadiRate: estimating family turnover rates by likelihood-based methods

MOTIVATION The comparative analysis of gene gain and loss rates is critical for understanding the role of natural selection and adaptation in shaping gene family sizes. Studying complete genome data from closely related species allows accurate estimation of gene family turnover rates. Current methods and software tools, however, are not well designed for dealing with certain kinds of functional...

متن کامل

Estimating recombination rates using three-site likelihoods.

We introduce a new method for jointly estimating crossing-over and gene conversion rates using sequence polymorphism data. The method calculates probabilities for subsets of the data consisting of three segregating sites and then forms a composite likelihood by multiplying together the probabilities of many subsets. Simulations show that this new method performs better than previously proposed ...

متن کامل

Estimating recombination rates from population genetic data.

We introduce a new method for estimating recombination rates from population genetic data. The method uses a computationally intensive statistical procedure (importance sampling) to calculate the likelihood under a coalescent-based model. Detailed comparisons of the new algorithm with two existing methods (the importance sampling method of Griffiths and Marjoram and the MCMC method of Kuhner an...

متن کامل

Local Prune, Delete, and Graft Recombination for Maximum Likelihood

The Maximum Likelihood (ML) problem in phylogenetics is an optimization problem where we seek to find the model tree of maximum probability given a specific evolutionary model. Solving the problem involves solving for a tree topology and a set of model parameters that maximize the probability of the observed data. The problem is computationally difficult and unsolvable in the general case becau...

متن کامل

Monte Carlo Local Likelihood for Estimating Generalized Linear Mixed Models

We propose the Monte Carlo local likelihood (MCLL) method for estimating generalized linear mixed models (GLMMs) with crossed random e ects. MCLL initially treats model parameters as random variables, sampling them from the posterior distribution in a Bayesian model. The likelihood function is then approximated up to a constant by tting a density to the posterior samples and dividing it by the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the Royal Statistical Society: Series B (Statistical Methodology)

سال: 2002

ISSN: 1369-7412,1467-9868

DOI: 10.1111/1467-9868.00355